

Complete the Distinguished Lecturer Event Summary Critique

CTTC needs your feedback to continue to improve the DL Program

- ✓ Distribute the DL Evaluation Form to all attendees
- ✓ Collect at the end of the meeting
- ✓ Compile the attendee rating on the Event Summary Critique
- ✓ Send the completed Event Summary Critique to your CTTC RVC and ASHRAE Headquarters

0 Things to do P 6

Forms are available at:

VOLUNTEER!

BECOME A FUTURE LEADER IN ASHRAE - WRITE THE NEXT CHAPTER IN YOUR CAREER

ASHRAE Members who attend their monthly chapter meetings become leaders and bring information and technology back to their job.

YOU ARE NEEDED FOR:

- Membership Promotion
- Research Promotion
- Student Activities
- Chapter Technology Transfer Technical Committees

Find your Place in ASHRAE! Visit

ww.ashrae.org

uishedlecturers

ASHRAE Chapter Visits

Update on Refrigerants: Past, Present and Future

Eckhard A. Groll Reilly Professor of Mechanical Engineering Director of the Office of Professional Practice Fellow ASHRAE

Purdue University Ray W. Herrick Laboratories West Lafayette, Indiana 47907, USA Phone: 765-496-201; Fax: 765-494-0787 E-mail: groll@purdue.edu

© Eckhard A. Groll

Contents

- Introduction
- History of Refrigerants (before 1930's)
- Introduction of CFCs in the 1930's
- Chemical Compositions and Nomenclature of CFCs, HCFCs, and HFCs Refrigerants
- Ozone Depletion and Change from CFCs/HCFCs to HFCs
- Global Warming and Change from HFCs to Natural Refrigerants
- Introduction to HFOs
- Summary

Course Description

- Update on Refrigerants: Past, Present and Future ٠
 - pdate on Refrigerants: Past, Present and Future In recent decades, the refrigeration and air conditioning industries have been in a state of flux primarily because of the phase-out of coone-depleting CFC and HCFC refrigerants, and secondarily because of environmental concerns related to the direct global warming impacts of some of the replacement refrigerants. Due to these concerns, there is significant worldwide interest in using substances that are naturally occurring in the biosphere as refrigerants, which are considered benign to the environment and are termed "natural working fluids". Surprisingly, many of these substances were already used as refrigerants at the dawn of the refrigerants of the future, it is essential to understand which substances have been used in past. This presentation provides a detailed review of the past and present refrigerants, and proposes refrigerants and their respective technologies that could be used in the future. An assessment of their characteristics related to choice of one versus another, and an identification of trends set by these choices will be made. another, and an identification of trends set by these choices will be made.

© Eckhard A. Groll

Learning Objectives

- 1. Distinguish between the refrigerants that have been in used in vapor compression systems up to now
- 2. Describe the basic chemical compositions of refrigerants and the numbering system used to classify refrigerants
- 3. Explain the concepts of ozone depletion and global warming and the contribution of CFC/HCFC/HFC refrigerants to both issues
- 4. Identify refrigerants that are available for use in the future and the technical issues associated with them

- Refrigeration of Food
- Cooling in Medical Applications
- Air Conditioning
- Cooling of Manufacturing Processes
- Chemical Engineering (Pharmaceutical and Petrochemical)
- Environmental Engineering
- Liquid Fuels for Space Applications
- Cryo Engineering
- ...
- → Refrigeration is present in all aspects of engineering and the daily life

Industrial Revolution in the 1800's

- 1834: Jacob Perkins (London) invented and patented the compression refrigeration machine, using ethyl ether. The first machine was built by John Hague in London.
- 1850: A.C. Twinning constructed an ether compression refrigeration system in Cleveland, Ohio (1 ton of ice per day).
- 1873: David Boyle (US). First ammonia compressor.
- 1874: Raoul Pictet (Switzerland). First sulfur-dioxide compressor.
- 1876: F. Windhausen (Germany). First industrial water vapor refrigerating machine.
- 1887: J. & E. Hall (Great Britain). Industrial manufacture of carbon-dioxide compressors.

© Eckhard A. Groll

ſ	Kefriger	ants up	to to	1930):	
Substance	Refrigerant	Chemical	NBP	СТ	Rel	COP
	Number	Formula	۰C	∘C	vol	-15/30∘C
Air 1	R-729	-	-	-221.0	83.0	1.1
Water	R-718	H ₂ O	100.0	375.0	477	4.1 ³
Carbon Dioxide	R-744	CO2	-55.6 ²	31.0	1.0	2.56
Ammonia	R-717	NH ₃	-33.3	135.0	3.44	4.76
Sulphur Dioxide	R-764	SO ₂	-10.0	157.0	9.09	4.87
Diethylether	R-610	$C_2H_5.0.C_2H_5$	34.6	214.0	55.0	4.9
Dimethylether	E-170	CH3. O. CH3	-24.8	128.8	34.0	4.5
Methyl Chloride	R-40	CH ₃ CI	-24.2	143.0	5.95	4.9
1. Reversed I 2. Triple poin	Brayton Cycle t					

_			
-			
-			
-			
_			
_			
_			

Refrigerant	Engineering Challenges
Air	Inefficient; reversed Brayton cycle operation
Water	Low pressures; operation above freezing
Carbon dioxide	High pressure; transcritical operation
Ammonia	Toxic, somewhat flammable
Sulphur Dioxide	Toxic, aggressive
Ethers	Toxic, aggressive
Hydrocarbons, e.g., propane, butane, etc.	Highly flammable

Chlorofluorocarbons (CFCs)

Introduced as "Miracle Substances"

- In 1930, T. Midgley, A.L. Henne and McNary developed halogenated hydrocarbons ("Freons") as refrigerants at the General Motors Labs for Frigidaire (Dayton, Ohio)
- Excellent thermodynamic properties
- Inexpensive, non-flammable and non-toxic
- Used as: refrigerants, solvents, propellants, blowing agents
- Stable perhaps too stable

What is Global Warming?

- The earth radiates heat to the universe at various wavelengths.
- Global warming gases in the upper stratosphere "close windows" of certain wavelengths.
- Thus, some of the earth's heat is not radiated to the universe, but instead reflected to the earth surface (trapped inside the atmosphere).
- The results is an average increase of the earth's temperature.
- How is the global warming impact of different substances measured?
 - » Relative to the global warming impact of the same mass of CO_2

© Eckhard A. Groll

32

Refrigerant	Chemical	NRP	Glide	СТ	GWP	Safety
Number	Formula	°C	K	°C	- OWI	Group
R-134a	CH ₂ F.CF ₃	-26	0.0	101	1300	A1
R-413A	R-134a/218/600a	-35	6.9	101	1770	A1/A2
R-404A	R-143a/125/134a	-47	0.7	73	3260	A1/A1
R-507	R-143a/125	-47	0.0	71	3300	A1
R-407C	R-32/125/134a	-44	7.4	87	1520	A1/A1
R-417A	R-125/134a/600	-43	5.6	90	1950	A1/A1
R-410A	R-32/125	-51	0.2	72	1720	A1/A1
R-508	R-23/116	-86	0.0	13	11860	A1

	0	
Austria :	Discussion of HFC-taxes	
Denmark :	HFC tax of 0.1 DKK/kg CO ₂ -eqivalent (e.g. R-134a = \$20) HFC ban in certain applications starting 2002 and 2006	
Germany :	Federal Ministry of Environment issued HFC Regulations	
Great Britain :	Discussion of possible actions	
lceland :	HFC usage other than refrigeration prohibited since 1998	
Japan :	Relying on voluntary leakage reduction agreements with industry	
Netherlands :	Max. leakage permitted by law	
Norway :	HFC-tax 0.18 NOK/kg CO2-equivalent effective since 1.1.2003	
Sweden :	Reduction of leakage Prohibition of HFC systems with more than 25 kg charge Sweden discusses HFC-taxes 4 times higher than Denmark	
Switzerland :	Discussion of measures to reduce HFC emissions	
USA:	HFC recovery required by legislation	3
	© Eckbard A. G.	ro

What is the Alternative?

Natural Refrigerants

Donella Meadows, American writer:

"The eighty thousand different chemicals now manufactured end up everywhere, from our stratosphere to our body. They were created to accomplish functions that can now be carried out far more efficiently with biodegradable and naturally occurring compounds."

Ammonia, carbon dioxide, hydro carbons, water, air, helium ... R-717, R-744, R-290, R-600a, R-718, R-729, R-704 ...

Refrigerant	Chemical	NBP	Glide	СТ	GWP	Safety
Number	Formula	°C	К	°C		Group
R-717	NH ₃	-33	0.0	133	0	B2
R-600a	CH.(CH ₃) ₃	-12	0.0	135	3	A3
R-290	C ₃ H ₈	-42	0.0	97	3	A3
R-1270	C ₃ H ₆	-48	0.0	92	3	A3
R-744	CO2	-57	0.0	31	1	A1

Already, some Consumer are Trendsetters

- McDonalds goes for natural refrigerants, first HFC-free restaurant opened in Denmark in 2003
- The Coca-Cola Company will only use HFC-free technology in bottle coolers from 2004
- Unilever wants to use HFC-free technology
- Nestlé wants to use natural refrigerants wherever possible
- Scandinavians value natural refrigerant supermarkets higher than conventional supermarkets
- British insurance companies are said to reduce investments in greenhouse warming industry
- Carlsberg brewing company is looking at HFC-free beer coolers

© Eckhard A. Groll

Also, Suppliers & Manufacturers are Trendsetters

- AEG (D), Bosch-Siemens (D), Electrolux (S), Liebherr (D), Vestfrost (DK) etc.: iso-butane in household refrigerator / freezers
- Earth Care Technology (GB): hydrocarbon air conditioners: unitary, split and central
- Airned (NL): hydrocarbon air conditioners, split + central
- Axima (D), York Refrigeration (DK, D, NL): carbon dioxide in industrial refrigeration
- Gea, Linde, York: ammonia water chillers for air conditioning
- York Refrigeration (DK): hydrocarbons in chillers
- DeLonghi (I): hydrocarbon plug-in air conditioners
- ILK Dresden (D): water as refrigerant
- A, DK, D, NL, S, CH ... heat pumps with hydrocarbons
- German car manufacturers wanted to use CO₂ in mobile AC
- ... and others ...

- R-1234yf, R-1234ze
 - » Classified as Mildly Flammable (A2L) by ASHRAE 34 and ISO817
 » Use of A2L refrigerants should be discussed for wider application
- HFO-1234yf:
 - » Leading candidate to replace R-134a in mobile applications
 - » GWP of 4, no Toxicity, slightly flammable
 - » Possible applications: stationary HVAC equipment, will require significant engineering and safety code changes
- HFO-1234ze:
 - » Ideal application: Foam Blowing, not necessarily HVAC&R
- » GWP of 4
- HFO/HFC/? Blends:
 - » Better Performance at the cost of higher GWP

If "Mildly" Flammable becomes Acceptable?

• What about R-32?

- » GWP: 675
- » Suitable for all R-410A products
- » Better performance than R-410A in cooling and heating
- » Better performance for high ambient temp. than R-410A
 » Classified as Mildly Flammable (A2L) by ASHRAE 34 and
- ISO817
- » Refrigerant charge volume can be reduced
- » Use of A2L refrigerants should be discussed for wider application
- > Upper charge volume should be decided by taking into consideration safe use of multi system
- » Continuous refrigerant containment measures are necessary

© Eckhard A. Groll

Summary

• An "Unprecedented" Situation:

- » Natural refrigerants can *not* be used in existing equipment without significant modifications
- » Nearly all refrigeration equipment must be redesigned
- » Alternative technologies need to improve performance, or they are not "feasible"
- » Incentives to improve performance by better design
 - → Many Opportunities Unfold

