Energy-Efficient & Net Zero Laboratory Ventilation Design Practices and Technologies

Garvan Cancer Center, Australia

Masdar City, UAE

ASU: Biodesign Institute

New Apple HQ

Grand Mosque, Mecca MGM Macau Casino Gordon P. Sharp, Aircuity

Why are Labs Important in Terms of Energy?

(based on NIH Louis Stokes Laboratory)

The HVAC load will typically be 60 to 80% of lab energy!

So What is Net Zero & How Does it Relate to Labs?

Could be Net Zero relative to CO2 or just Energy

Relative to energy use is more relevant to Labs

Could be Net Zero for building or for the site

- ✓ Net zero w/ lab using PV possible but 1 lab floor only
- More realistic is a site based PV or wind turbine
 - Masdar Institute of Science & technology (MIST) Near Net Zero
 - Goal was based on site vs. building uses a 10 MW PV on site

Also Emerging: Net Zero Ready & Near Net Zero

"Net Zero Ready" bldgs:

- Designed for very low energy use
- ✓ Idea is to add renewables later when their cost drops
- "Near Net Zero" Bldgs;
 - ✓ Like "Net Zero Ready" they are very low energy use
 - Renewables used but less than needed for Net Zero
 - Example of MIST in Abu Dhabi, UAE

"Net Zero Design" concepts are economically & broadly applicable to cut energy use in any lab building today!

So What is the Plan for Reaching (Near) Net Zero:

The Three R's Approach to hitting Net Zero:

How To Achieve Deep Energy Reduction?

A focus on max savings

- Not a grab bag of many ideas
 - Focus on a few, high impact concepts
- Foundation: Airflow reduction
 - Airflow has greatest energy impact
 - Skin load much less important

Need for a holistic approach to technologies

✓ We will use an energy model for 1st cost & energy use

- Impact of combining low flow design & other concepts non-intuitive

"In God We Trust, All Others Must Provide Data!"

Objectives of This Course

Identify high impact HVAC technology/concepts Understand more about applying these approaches Rank order approaches in terms of savings % Understand interactions between approaches Look at energy savings holistically vs. individually Examine predicted savings & first costs Uses a sophisticated lab focused analysis tool

Low Energy Lab Design Overview

- Introduction to low energy/Net Zero lab design
- Lab energy and first cost analysis tool
- Design issues involved in achieving 2-4 ACH safely
- Applicable technologies and concepts
 - ✓ VAV lab air flow controls
 - Demand based control
 - Hydronic cooling & chilled beams
 - ✓ Variable flow exhaust fan control
 - Low pressure drop design
 - Heat recovery systems
- Case study examples
- Summary

Kuwait Criminal Evidence Lab

Key Conclusions For Near Net Zero Design:

- Low ACH design is key to Net Zero Energy
 - The foundation for Deep Energy Reduction
 - ✓ Low ACH Design is a Paradigm Shift from 6 10 ACH
- Demand Based Control safely reduces lab ACH
 - More airflow when you need it & less when you don't
- Cutting energy use can also Reduce First Cost!
 - Less airflow means less HVAC system capacity

Low Flow/Energy Lab Design is a New Paradigm!

Outside air : Largest energy driver Reducing OA reduces many energy uses Single largest impact on energy : Demand Based Control of ACH – ACH = Air Changes per Hour Codes/standards are now supportive ✓ ASHRAE Handbook, NFPA 45-2011, etc. Result: Dramatic cut in energy use ✓ Up to >50% lab building energy cut And first or capital cost can <u>also</u> be cut

If these approaches are used a Net Zero lab is possible in Abu Dhabi, although many would call that not just mission difficult but: <u>Mission Impossible!</u>

THE FOLLOWING **PREVIEW** HAS BEEN APPROVED FOR **LAB BUILDING DESIGN & OPERATIONS AUDIENCES** BY THE INTERNATIONAL INSTITUTE OF SUSTAINABLE LABORATORIES

www.labratings.com

www.i2sl.org

Laboratory Ventilation Savings Analysis

Onion University of America

Plant Research Laboratory and Odor Studies Center Vidaliaville (Using weather data from Boston, Massachusetts)

Copyright 2010

Confidentiality Note: This document, and the software program that criated is is converted and intended for use only by the individual or entity to which it is addressed and may contain information that is procleged, mothelential, and exempt from disclosure under applicable law. If the reader is not the intended recipient or the employee or agent recipient and exempt from disclosure the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please contact the sender immediately and destroy the material in its entity, whether electronic or hard copy.

Lab Building Energy Analysis & ROI Tool

Energy, First Cost, & Payback Analysis Tool

- Lab focused design analysis
 Customized analysis engine
 Several utilities have reviewed & approved tool
 PG&E, S. Cal. Edison, Con Ed
- Validated by Emcor & others
- BMS company branches have used it
 - Basis for guaranteed performance contract savings

Background & Availability of the Lab ROI Tool

- First used to evaluate energy & first cost impact of demand based control
- Over last 3 years it has been evolving into a general purpose analysis tool
- Unique focus on lab airside systems
- Availability:
 - Users must be trained to obtain the tool.
 - Tool may be available from I2SL in the future for a reasonable annual fee to cover support & distribution. Annual license is free for now.
 - I2SL & chapters have begun to offer full day training courses for typical workshop fees.

Uses New Weather Data for Accurate Savings

Uses new TMY3 data set

- ✓ "Hotter" (adds 1990 2005) vs. Older TMY2 data
- ✓ Incorporates 1700 cities worldwide

Incorporates detailed humidity data

- Uses 8 humidity values per temp. bin
- ✓ Yields much more accurate results than MCWB data

Lab ROI Tool: HVAC System Model

A Holistic Approach for Increased HVAC Savings

- Individually evaluating systems is suboptimal
 DBC, chilled beams, hoods & heat recovery
 To optimize lab safety, first cost & energy:
 Combining systems appropriately is best
 - ✓ Also use a layered or pyramid approach:

Locations for Analysis Example

Using Boston for representative climate city:

- Solution Soluti Solution Solution Solution Solution Solution Solution So
- Where relevant other cities used for comparison:
 - Madison & Denver, for a colder climate
 - Atlanta, Phoenix, Wash, & Miami for a warmer climate
 - ✓ Los Angeles for a neutral climate

Boston Example Analysis Assumptions

Boston Example Analysis Assumptions

Room Temp setpoint: 74 DegF HVAC System Eff:

- ✓ Cooling:
 - Total COP of chilled water plant: 3.3
 - Eff. Chilled Beam "COP": 4.0
- ✓ Heating plant: 75% total eff.

Typical thermal loading used

- ✓ 80% of labs at 3 W/ft² avg day
- \checkmark 20% of labs at 6 to 9 W/ft² avg day
- No humidification used

6 ACH Baseline Energy Costs For Boston

Skin & solar gains typically small compared to OA

- Base flow rate (including offices):
 - ✓ 72.5K cfm day & 63.7K cfm night
- Total baseline energy use is \$390K/ year

Baseline Cities at 6 ACH

Average Energy Usage is \$418K

6 ACH Baseline Energy Costs For Des Moines

Uses average lowa utility rates (less than Boston):

- Electric rate of \$0.09/kWh
- Gas rate of \$.70/Therm
- Uses Des Moines, Iowa weather data
- Total baseline energy use is \$308K/ year

Holistic Strategies for Increased Savings

- Individually evaluating systems is suboptimal
 DBC, chilled beams, hoods & heat recovery
 To optimize lab safety, first cost & energy:
 - Combining systems appropriately is best
 - Also use a layered or pyramid approach:

Achieving Down to 2 ACH Safely in Labs

Goal: Achieve 2 ACH day/night or 3-4 day/2 nightWhat are the drivers of lab airflow that affect this?

Hood flows, thermal loads & ACH rates

To achieve lab flows down to 2 ACH to reduce energy & 1st cost, <u>all</u> flow requirements need to be reduced

Reducing the Fume Hood Flow Drivers

- For <u>low</u> fume hood density:
 - ✓ Use VAV hoods, low FV not required
 - ✓ Helpful to use 18" design opening
 - ✓ For poor sash behavior, use sash closers
- For <u>moderate</u> density:
 - ✓ Also use new ANSI Z9.5 fume hood min:
 - Old 6' fume hood min was ~250 cfm
 - New 6' fume hood min as low as ~100 cfm
- For <u>high</u> hood density:
 - ✓ Use VAV low FV hoods or VAV & sash closer
 - ✓ Ability to hit 2/4 ACH depends on density
 - Up to three 6' hoods per 900 $ft^2 = 2 \text{ ACH}$
 - Up to six 6' hoods per 900 $ft^2 = 4 \text{ ACH}$

For most labs: min hood flow < 2 to 4 ACH

Major Change in Lab Standards: Fume Hood Min Flow

New NFPA 45 standard changed:

- ✓ 2004 version recommended 25 cfm/ ft²
- ✓ 2011 version now only refers to Z9.5

– Z9.5 is their sole guideline on hood min flow

New ANSI/AIHA Z9.5 standard:

2003 version recommended:

 Larger of 50 cfm/ ft of hood width or 25 cfm/sq ft of bench area

✓ 2012 version significantly changed:

- Changed basis of flow to hood ACH (volume)
- Changed min flow to a range recommendation
 - 25 cfm/ft² changed to 150 to 375 hood ACH

What is the Fume Hood Minimum Flow Rate?

Fume Hood Min:

- ✓ For VAV hoods
- Only affects hood flow for small or closed sash positions
- Independent of face velocity
- Changing min will <u>not reduce</u> face velocity

What is the VAV Fume Hood Minimum Flow Rate?

Fume Hood Min:

- ✓ For VAV hoods
- Only affects hood flow for small or closed sash positions
- Independent of face velocity
- Changing min will <u>not reduce</u> face velocity

Dual Lab Module Min Hood Flow Savings Ex.

- Assumes control devices are properly sized for flows
 ✓ Also assumes \$7.50 cfm/yr. & sashes are closed 70% of time
- Lab Case 1 Old hood min:
 - ✓ 600 sq. ft by 10 ft ceiling w/ two 6' hood min flows at 250 cfm
 - ✓ Minimum ACH = (250 X 2) / (600 X 10/60) = <u>5.0 ACH min</u>
- Lab Case 2 New hood min:
 - ✓ Same as above but w/hood min flows at 100 cfm
 - Min achievable ACH = (100 X 2) / (600 X 10/60) = 2.0 ACH min
- Savings is approximately 300 cfm max or 210 cfm avg.

Energy savings impact of lower min is \$1575/yr or \$2.63/ sq. ft

Reducing the Fume Hood Flow Drivers

- For <u>low</u> fume hood density:
 - Use VAV hoods, low FV not required
 - ✓ Helpful to use 18" design opening
 - ✓ For poor sash behavior, use sash closers
- For <u>moderate</u> density:
 - ✓ Also use new ANSI Z9.5 fume hood min:
 - Old 6' fume hood min was ~250 cfm
 - New 6' fume hood min as low as ~100 cfm
- For <u>high</u> hood density:
 - ✓ Use VAV low FV hoods or VAV & sash closer
 - ✓ Ability to hit 2/4 ACH depends on density
 - Up to three 6' hoods per 900 $ft^2 = 2 \text{ ACH}$
 - Up to six 6' hoods per 900 ft² = 4 ACH

For most labs: min hood flow < 2 to 4 ACH

Another Approach to Reduce Hood Airflow

Consider fume hood occupancy sensors:

Also known as Zone presence sensors

✓ Hood face velocity reduced from 0.5 m/s to 0.3 m/s

- Velocity drops when user walks away and rises when using hood

Reducing the Thermal Load Flow Drivers

Labs 21 & UC Davis study:

- ✓ Avg plug & lighting load: 2.5 to 3 W/ft²
 ✓ <20% of labs may have loads >4 W/ft²
- For these typical avg. rooms:
 - ✓ Daytime: Normal thermal loads ≤ 4ACH
 - ✓ Nighttime: Use temp setback to hit 2ACH
- For more flexibility & efficiency
 - ✓ Decouple thermal & air flow requirements
 - Use chilled beams or hydronic cooling
 - ✓ Often can provide first cost advantages

Although not required, hydronic cooling/chilled beams have many advantages when coupled w/ low ACH design

Reference for Thermal Load Data

- UC Davis LBNL Study
 - ✓ HPAC Article (Sept & Oct, 2005)
- Measured plug loads in labs
- Lighting, solar, people may add another ~ 1 w/sf

Osing measured equipment-load data to avoid oversizing and minimize simultaneous heating and cooling, reducing initial and life-cycle costs

FIGURE 5. Equipment loads measured in 15-min intervals. The top and bottom edges of the boxes represent the 99th and first percentiles of the measurements, respectively, while the ends of the upper and lower lines represent maximum and minimum, respectively.

Reducing the Thermal Load Flow Drivers

Labs 21 & UC Davis study:

- ✓ Avg plug & lighting load: 2.5 to 3 W/ft²
- ✓ <20% of labs may have loads >4 W/ft²

For these typical avg. rooms:

- ✓ Daytime: Normal thermal loads ≤ 4ACH
- ✓ Nighttime: Use temp setback to hit 2ACH

For more flexibility & efficiency

- ✓ Decouple thermal & air flow requirements
 - Use chilled beams or hydronic cooling
 - Fan coil units, radiant ceilings, etc.
- ✓ Often can provide first cost advantages

Hydronic cooling/chilled beams have many advantages when coupled w/ low ACH design

Reducing the ACH Rate Flow Drivers:

- One approach to reduce airflow:
 - ✓ Reduce airflow slightly during unocc. periods
 - ✓ For example 8 ACH occ. and 6 ACH unocc.
- This has been used, but is it really safe?
- Standards and codes have been changing
 - ✓ NFPA 45-2011: 8 Occ/4 Unocc rates removed
- 2011 ASHRAE Handbook, Lab chapter 16:
 - Occ/Unocc Control scope is being limited:
 - "There should be no entry into the laboratory during unoccupied setback times"
 - "…Occupied ventilation rates should be engaged possibly one hour or more in advance of occupancy to properly dilute any contaminants."

Occ/Unocc control best used only when lab room access can be controlled

Ventilation rate (cfm)

Impact of Higher Air Changes

- Test Case– Teaching Lab
- Acetone at 4 ACH
- CFD courtesy of Glenn Schuyler's ASHRAE Presentation

Plot3d V 02 kgkg

Relative contaminant level: 27 PPM (black)

Impact of Higher Air Changes

- Test Case– Teaching Lab
- Acetone at 8 ACH
- CFD courtesy of Glenn Schuyler's ASHRAE Presentation

Relative contaminant level: 2.5 PPM (light blue): Factor of 10 improvement!

Reducing the ACH Rate Flow Drivers:

- Min lab ACH often fixed at 6-12 ACH
 - Typically becomes largest energy driver
- However, lab air is clean > 98% time
- But, events happen requiring >6ACH
 - Eliminate fugitive vapors
 - ✓ Dilute vapors or particles from spill or:
 - Working outside the hood, improper storage
 - No localized exhaust for instruments
- Often little basis for an ACH rate

The "human" factor

There is no one ventilation rate that is right all the time: *A more scientific, evidence based approach is needed!*

Varying the ACH Rate w/ Demand Based Control

- Demand Based Control (DBC or CDCV)
 - Reduces lab airflow when lab air is "clean"
 - Increases lab flow when pollutants sensed
- Fixed min ACH is always too high or low
- Equal or better safety w/ the <u>Best</u> airflow
 When needed flow can be upped to 8-16 ACH
- Clean flow setting of 4/2 ACH is typical
 ✓ 4/2 ACH best done as day/night vs. occ/unocc
 - ✓ Other approaches: 3/3, 3/2 or 2/2 also used

An energy efficient means to purge at 15 ACH <u>AND</u> A safe means to run at 4 to 2 ACH

Vary dilution/ min ACH's by sensing room IEQ \checkmark If room air is clean, dilution airflow can be reduced If contaminants are sensed, more airflow is provided Most lab controls can vary min ACH levels Critical piece: Sensing of IEQ parameters: ✓ Lab TVOC's, particles, ammonia, RH, CO, & CO2 Barriers to date: Cost effectivity & practicality Sensor cost, long term reliability, & calibration exp.

A new cost effective sensing concept is required

Sensed Parameters

Air Cleanliness

✓ Total Volatile Organic Compounds

- Photo-Ionization Detector & Metal Oxide Sensor
- ✓ Particles laser based particle counter
- ✓ Carbon Monoxide (CO)

Comfort &Ventilation

- ✓ Temperature
- Humidity or Dewpoint
- ✓ Carbon Dioxide (CO2)

Normal Lab Operation w/ Dynamic Control

Sensing Lab IEQ Also Helps Ensure Lab Safety

- Validates the safe operation of a lab
 - Detect improper bench use of chemicals
 - Detect poorly containing fume hoods
 - Spills & rogue reactions rapidly sensed
- Allows for safer lab airflow control
 - Better hood capture from reduced drafts
 - Greater dilution provided for spills, leaks, etc.
- Sources of leaks & emissions can be found
 - ✓ With fact based data, source control can be used

This system is <u>NOT</u> a replacement for using hoods for containment or emergency spill procedures!

Detection of Improper Lab Practices: Lynch Life Sciences Labs

The graph below illustrates what happens to the TVOC levels in a lab when a researcher **improperly vents his experiment**.

A researcher in lab 331 was sticking the exhaust of his mass-spec. into the local snorkel exhaust , then pinched it off with the blast gate. This created elevated TVOC levels in the lab.

Lab IEQ Data can also be Analyzed & Managed

	IEQ Summary - Peak PID TVOC's over Time				
	6	Current Previous		?	
AHU Room		 0 5			
R Previous		EQ Summary - Peak PID TVOC's over Time		*	
	ррт	Current LSB_012A_FLEX_Room		2	
		25 Drill down further to			
 Second Second Sec		²⁰ observe the hour			
Coment Prentou 134. 104		event occurred.			
		5			
		0	9PM	10PM	
Angelon Angelon	-				

However, Demand Based Control is Not

DBC & its lab IEQ sensing is NOT a:

- ✓ Toxic gas sensing system
- Personal exposure monitoring system
- Replacement for fume hood use
- Replacement for emergency spill procedures

Demand Based Control is a safe energy saving system.... that also has some additional safety benefits

Industry Recommendations on ACH Rates

No codes other than ASHRAE 62.1

- ✓ At best for Univ/college labs: 1.2 ACH fresh air
- Most fixed ACH values are being dropped:
 - ✓ NFPA 45 2011: 8 Occ / 4 Unocc rates were removed
 - ✓ ANSI Z9.5 does not advocate for any fixed rate:
 - "An air exchange rate (air changes per hour) cannot be specified that will meet all conditions."

	and the second					
	NEPA 45					
	Standard on					
	Fire Protection					
	Tor Laboratories					
22	Using Chemicals					
	2004 Edition					
-						
-						
	Construction in the local division of the					

Industry Recommendations on ACH Rates & DBC

2011 ASHRAE Handbook, Lab chapter 16:

 ...recent university research (Klein et al. 2009) showed a significant increase in dilution and clearing performance by increasing the air change rate from 6 to 8 ach with diminishing returns above 12 ach.

- ✓ …This information indicates that minimum ventilation rates at the lower end of the 6 to 12 air change per hour range may not be appropriate for all laboratories.
- ...As the operation, materials, and level of hazard of a room change, an increase or decrease in the minimum ventilation rate should be evaluated.
- ...Active sensing of the air quality in individual laboratories is an alternative approach for dealing with the variability of appropriate ventilation rates, particularly when energy efficiency is important or when less may be known about the hazard level.

Using a single ACH rate such as 6 ACH is not appropriate. Yale research shows a significant difference from 6 to 8 ACH.

ASHRAE Handbook Provides New Guidance

New 2011 ASHRAE Handbook, Lab chapter 16:

Active/Demand Based Control is recommended:

- "Reducing ventilation requirements in laboratories and vivariums based on real time sensing of contaminants in the room environment offers opportunities for energy conservation."
- "This approach can potentially reduce lab air change rates down safely to as low as 2 air changes per hour when the lab air is 'clean'..."

2008 Lab IEQ Performance Monitoring Study

- Largest known study done to date
 - 1,500,000 lab operating hours analyzed
 - 20 Million sensor data values recorded
- 18 different sites selected
 - ✓ 6 East, 7 Central, 3 West, 2 Canada
- Over 300 different lab areas

*ASHRAE Journal Feb 2010

- ✓ Research: Life sciences, bio, physical chem, etc
- Almost all low density labs w/ dynamic control
- ✓ 3 animal facility sites

Average TVOC Levels at 18 Different Sites

Typical Lab Operation – 2 weeks of TVOCs

Illustrates common "minor" excursions of TVOCs where higher ACH are commanded

Majority of time TVOC's are at or below even 0.1 ppm

Avg. Differential Particle Levels at 18 Sites

Data shows significant savings at all sites

Lab Case Study: Arizona State University

ASU Biodesign Institute Bldgs A & B Retrofit

Retrofit of Labs and Vivarium

LEED[®] NC Platinum, R&D 2006 Lab of the Year

✓ Lab DCV pilot in 2007 to look for EE: 65% savings achieved

- ✓ Full building retrofitted in 2009: \$1 Million saved annually
- Currently 24 buildings have been retrofitted:

- Office, classroom, library, sciences bldgs, sports arena & others

University Of California Irvine Case Study

Hewitt Hall: Designed in 2001

- Exceeded Title 24 by 23.7%
- Biomedical research
- Re-Commissioned in 2010
- 8 ACH fixed minimum
- 76,905 Square Feet

Gross Hall: Designed in 2009

- Exceeded Title 24 by 50.3%
- Biomedical Research
- Submitted: LEED Platinum
- DBC: 4/2 ACH Occ/Unocc
- 94,705 Square Feet

Both buildings similar in layout, function, & use

Lab Air Flow vs. Time For Both Bldgs

Significant DBC energy savings of ~1 CFM/ft2

1 Week Fan and Pump Electrical Demand

UCI Now Engaged in Retrofitting 10 Bldgs to DBC

Laboratory Duilding	Before "Smart Lab" Retrofit		After "Smart Lab" Retrofit	
Laboratory Building	Estimated Average ACH	VAV or CV	kWh Savings	Therm Savings
Croul Hall	6.6	VAV	41%	-
McGaugh Hall	9.4	CV	47%	66%
Reines Hall	11.3	CV	77%	77%
Natural Sciences II	9.1	VAV	48%	62%
Biological Sciences 3	9.0	VAV	45%	81%
CALIT2	6.0	VAV	46%	78%
Gillespie Neurosciences	6.8	CV	58%	81%
Sprague Hall	7.2	VAV	71%	83%
Hewitt Hall	8.7	VAV	58%	77%
Engineering 3	8.0	VAV	59%	78%
AVERAGES	8.2	-	55%	76%

DBC is the largest contributor (>50 to 75%) of savings!

Other Projects Using Demand Based Lab Control

- Acadia University
- **Arizona State University**
- **Beth Israel Medical Center**
- **Chicago Botanic Garden**
- Cal State Univ., Monterey
- Cal Tech
- Case Western Reserve Univ.
- Colorado Sch. Of Mines
- Children's Hospital of Phil.
- Dalhousie Univ.
- **Dartmouth College**
- Eli Lilly
- Ferris State University
- Food & Drug Admin. (FDA)
- Ferris State University
- **Grand Valley State Univ**
- Harvard (HSPH)
- Indiana/Purdue Fort Wayne

- LabCorp BioRepository
- Masdar Institute (MIST)
- **Michigan State University**
- Midwestern University
- Ministère de l'agriculture,
- Montreal Heart institute
- Ohio State University
- Oklahoma State University
- Rice University
- SUNY Stony Brook
- Texas Children's Hospital
- University of Cal Irvine
- University of Iowa
- University of Louisville
- University of Pennsylvania
- Univ. Health Network: MaRS
- Van Andel Institute

Univ. of Louisville: **Bio Med 3**

UPENN: Carolyn Lynch Lab

UPenn: TRC

UPenn: "Demand Based Control is our #1 campus ECM"

DBC Energy Savings of 4 Day/2 Night ACH vs. 6 ACH

Demand Based Control reduces lab HVAC energy by \$200K or by 51% vs. 6 ACH. Payback is 2.2 years.

DBC Energy Savings of 4/2 vs. 6 ACH for Des Moines

Demand Based Control reduces lab HVAC energy by \$154K or by 50% vs. 6 ACH. Payback is 2.6 years.

Demand Based Control w/ 4/2 ACH vs. 6 ACH

Average energy savings is \$221K or 53% reduction

First Cost Saving at Univ. of Houston

Health & Biomedical Sciences Center / Optometry

- ✓ 6 Floors, ~150K sq. ft,
- ✓ 71 labs, 37 vivariums & 24 non-lab zones
- Lab & Vivarium flows reduced:
 - ✓ Labs from 12 ACH to 4 ACH
 - ✓ Vivariums from 15 ACH to 9 ACH
- Installed cost : ~ \$500K
- Est. energy savings ~ \$250K/ yr
- 2.0 year payback: energy only
- First cost savings up to \$1.0M!

Demand Based Control helped bring project into budget

HVAC 1st Cost Savings of 4/2 ACH vs. 6 ACH

DBC at 4/2 ACH vs. 6 ACH reduces peak HVAC airflow by 13% or ~ \$280K. Net payback is: 10.9 months!

HVAC 1st Cost Savings of 4/2 ACH vs. 8 ACH

DBC at 4/2 ACH vs. 8 ACH reduces peak HVAC airflow by 26% or ~ \$703K. Net first cost savings of \$238K!

Holistic Strategies for Increased Savings

- Individually evaluating systems is suboptimal
 DBC, chilled beams, hoods & heat recovery
 To optimize lab safety, first cost & energy:
 - Combining systems appropriately is best
 - Also use a layered or pyramid approach:

Variable Exhaust Fan Exit Velocity Control

- Exhaust fans typically run at constant flow
 - ✓ High plume discharge needed, ≥ 15 m/s exit vel.
 - Roof air bypass damper used to maintain CV
- To save energy, use multiple fans & stage
 - ✓ Group of fans are staged based on bldg exh. volume
- Better approach: variable speed/freq. control
 - Fan flow & speed varied based on building load

Even staged exhaust fans often consume >2X the energy vs. VAV

So What's the Catch, Why Not Use VAV?

CV & staged fan control maintains high exit velocity ✓ Minimizes downwind concentrations from spills, etc.

Variable volume control decreases exit velocity

- Downwind concentrations can increase as the volume flow rate & exit velocity decreases
- Y Typically not allowed due to min. required dilution
- How about a hybrid control approach?
 - Used staged control/high exit velocities when required
 - Otherwise use variable control to save more energy

Hybrid control could provide safety & energy savings, but how could it be implemented?

Changes in Criteria Provide Basis for Hybrid Control

Wind speed & direction criteria:

Takes advantage of reduced wind condition criteria

- When wind speed and direction fit certain criteria, VAV engaged
- Needs wind speed & direction sensing at a fair height above roof
- Savings will vary based on site wind conditions
- If wind unsteady or gusting, staged mode can be engaged frequently or for long periods

Changes in Criteria Provide Basis for Hybrid Control

Dilution level criteria:

- Many chemicals don't need high dilution
- ✓ Most plenums "clean" 98 to 99% of time
- ✓ Use active sensing of plenum: DBC app.
 - Normally: 98 to 99% of time engage VAV
 - If chemicals or particles sensed above threshold:
 - Override to CV/staged mode for high exit vel.
- ✓ Use for labs w/ good exhaust dilution

- Larger systems, life sciences, etc.

- For few high dilution chemicals not sensed
 - Need to limit quantity of chemical used in hoods

Reduced dilution criteria (DBC of fans) offers simple implementation & potentially greater saving

Normal Operation w/ Low or No Contaminants

Higher Dilution Engaged if Contaminants Sensed

Exhaust Fan Monitoring: Medical Research Building

Sample Comparison of Fan Control Energy Use

- **CV Exh fan power** : \$66K 100%
- Staged fan power : \$46K 69%
- DBC/VAV fan power : \$24K 37%

For VAV control of exhaust fans vs. staged fans: 47% savings

Comparison of Fan Control Energy vs. 6 ACH

For VAV control of exhaust fans vs. staged fans: Total reduction of \$22K or 6% for total reduction of 57%

Low Pressure Drop Design to Lower Fan Static

Basic approach is to lower airflow velocities

- Lower system air (face) velocity
- Oversize passive system components including coils, filters, and ductwork
- Evaluate level of air filtration.
 - ✓ Always use lowest pressure-drop filters.
- Eliminate or reduce reheat coils.
- Use low pressure-drop VAV-control devices
- Avoid noise-control attenuators (silencers)
 - Reduced pressure drop results in smaller, quieter fans that help eliminate silencers.

Lower System Air (Face) Velocity

Reduce face velocity with larger-area:

- heating and cooling coils,
- ✓ filters, and
- ✓ AHU housings.
- Recognize that small reductions in face velocity provide large (exponential) energy savings.

Optimize ductwork design

Specify large, round ductwork

- Provide sufficient duct space to reduce airflow resistance
- Rationalize duct layout to minimize fittings and bends
- Employ radiused bends rather than square

Image courtesy of Rumsey Engineers, Inc.

Low Pressure-Drop Design Guidelines

Component	Standard	Good	Better	
Air handler face velocity	500 fpm	400 fpm	300 fpm	
Air Handler (itself)	2.5 in. wc.	1.5 in. wc.	0.75 in. wc.	
Heat Recovery Device	1.0 in. wc. <u>X 2</u>	0.6 in. wc. <u>X 2</u>	0.35 in. wc. <u>X 2</u>	
Flow Control Devices	Flow Control Devices X 2: .6 to .3 in. wc.	Flow Control Devices X 2: .6 to .3 in. wc.	Low Pressure Flow Control Devices X 2: .4 to .2 in. wc.	
Zone Temperature Control Coils	0.5 in. wc.	0.3 in. wc.	0.15 in. wc.	
Total Supply and Exhaust Ductwork	4.0 in. wc.	2.2 in. wc.	1.5 in. wc.	
Exhaust Fan (itself)	2.0 in. wc.	1.5 in. wc.	1.0 in. wc.	
Noise Control (Silencers)	1.0 in. wc.	0.3 in. wc.	0.0 in. wc. (none)	
Total of Exh & Sup. w/o HR & Silencers	10.0 in. wc.	6.5 in. wc.	4.0 in. wc.	

Low PD Energy Reduction w/ DBC 4/2 & VAV Exh. Fan

For low PD w/ DBC & VAV Exh: Savings for Good & Better of \$20K & \$34K or 5.1% & 8.7% (vs. 14% & 24%)

Holistic Strategies for Increased Savings

- Individually evaluating systems is suboptimal
 DBC, chilled beams, hoods & heat recovery
 To optimize lab safety, first cost & energy:
 - Combining systems appropriately is best
 - Also use a layered or pyramid approach:

Hydronic Cooling Solutions: Chilled Beams

Active chilled beams

- Similar to passive beams but with induced air
- Most complex w/ cost 2X passive but highest cooling
 - Integrated source of airflow usually makes total cost favorable
- ✓ By far most popular, used in offices & labs

✓ Usually uses 100% OA

- Provides ventilation & controlling latent loads

Demand Based Control (DBC) Improves Beam Use

Chilled beams at 6 or 8 ACH min: Large overcooling & reheat Beams at 2- 4 ACH using DBC ✓ Greatly cut & eliminate these losses HVAC system can be downsized Thermal load decoupled from airflow ✓ Air system can be resized to 2-4 ACH DBC cuts beam size vs. heat recovery "Neutral air" sometimes used to cut reheat However, using cool air cuts beam sizing - DBC cuts reheat & eliminates need for wraparound HR/2 wheels

The whole (DBC & CB) is greater than sum of the parts.

Chilled Beam Savings w/ DBC 4/2 ACH vs. 6 ACH

For chilled beam w/ DBC: \$15K or 4% reduction. Airflow reduction is ~18% day & ~17% at night

4/2 Project: DBC & Chilled Beams at Cal Poly

Cal Poly Center for Science & Mathematics

✓ 198,000 GSF, Budget \$88 Million

- "Do the most sustainable project, but only if it doesn't cost more money"

Architect: ZGF Architects LLP

– MEP Engineer: Integral Group / Rumsey Eng.

All lab ventilation air passes through chilled beam

- Day rate of 4 ACH for full beam cooling
- Night rate of 2 ACH, beam cooling not needed
- ✓ Purge rate of 8 ACH when contaminants detected

Cal Poly Center First Cost Savings:

Option	Standard VAV Reheat	DBC with Chilled Beam	
AHU (\$7.5/CFM)	250,000 CFM	167,000 CFM	
EF (\$1.75/CFM)	324,000 CFM	256,000 CFM	
Ductwork	Standard	Reduced 30%	
Diffusers	Standard	Chilled Beam	
Piping	Reheat Loop	Heat Loop, Cooling loop	
Overall for 198K	\$716,000 First Cost Reduction		
GSF Bldg	(based on SD cost estimating exercise)		

DBC & chilled beams were added in value engineering!

"Right Sizing" Capital Cost Reductions @ 6 ACH

At 6 ACH baseline, gross capital savings of \$393K. Chilled Beam (CB) creates net savings of \$113K. DBC payback drops to 5.3 months

"Right Sizing" Capital Cost Reductions @ 6 ACH

At 6 ACH w/ higher load (50% greater normal load) chilled beam nets greater capital savings: \$254K

2/2 ACH Project: DBC & Hydronic Cooling at Masdar

Masdar City: Masdar Inst. of Science & Technology

- ✓ Goal for Masdar Institute (MIST) was to:
 - "... making Masdar City one of the world's most sustainable cities.
 - "Most significantly, do so in a commercially viable manner"
- ✓ Located in Abu Dhabi, UAE.
- Mixed use lab buildings: MIST 1 A & B: ~ 500K & 1 M GSF

MIST projects using 2 ACH day & night w/ DBC

- Also has a 14 ACH purge
- Setup like a DCV DOAS
 - Incorporates CO2 DCV as well

Major Energy & Capital Impact for Near Zero Labs

Masdar City, Abu Dhabi - Largest net/near zero project

- ✓ Near zero emissions lab w/ Demand Control & chilled beams
 - 150K m² total, ~ 40K m² of labs: MIST 1 A (Built) & 1B (Under const.)
- Projected total energy savings: \$2 M \$ or 9,000 MWh /year
 - Labs operate at 2 ACH (day & night), purge up to 14 ACH
- ✓ Downsized mechanical system to save HVAC capital costs
- ✓ Cuts solar PV capacity by ~ 3.75 MW or ~\$20M first cost!

MIST 1A & 1B Room Airflow Control design

Two Configurations: Both involve hydronic clg

- ✓ Fan coil lab: ventilation & cooling air totally decoupled
- CB & Fan powered box: some ventilation air to CB
- Decoupling ventilation & clg flow achieves 2/2 ACH

Capital Cost Reduction of 2/2 ACH &CB vs. 6 ACH

Using 2/2 ACH, CB, & reduced FH sash openings generates savings of \$628K: Net total savings of \$164K

Holistic Strategies for Increased Savings

- Individually evaluating systems is suboptimal
 DBC, chilled beams, hoods & heat recovery
 To optimize lab safety, first cost & energy:
 - Combining systems appropriately is best
 - Also use a layered or pyramid approach:

Heat & Energy Recovery Benefits

Heat Recovery (HR) reuses exhaust energy

- Transfers energy from exhaust to supply air
- Can reduce heating and cooling energy costs
- Significant peak load reductions
 - ✓ Reduces boiler & chiller costs.
 - ✓ Helps reduce HR investment
- May provide latent heat recovery
 - ✓ Some systems can transfer moisture
 - ✓ Humidifies in cold dry weather
 - ✓ Dehumidifies in warm humid weather

Heat & Energy Recovery Considerations

Most applicable to very cold & hot climates

- ✓ Not very effective in moderate climates
- Heat recovery is not always good:
 - When economizers would operate, HR wastes energy
 - Need to "turn off" HR during these times

For colder temperatures HR should be controlled

- Need to vary HR effectiveness to prevent over recovery
- Similar to variable economizer control for temps below supply

Heat recovery savings often overestimated

- Little cooling heat recovery until OA is > RA Temp
- ✓ 75% HR does not save 75% of clg costs, but htg okay

Fan energy increased by pressure drop X2

Airside Heat Recovery Options

Runaround Coils

Pros

- Greatest airstream separation, flexibility
- Simple Technology
- Easily cleaned
- Minimum space requirements

Cons

- Lowest recovery efficiency (55%)
- High parasitic loads for pumping
- No latent transfer
- Poor cooling performance
- Most moving parts, highest maintenance

Airside Heat Recovery Options

Plate Heat Exchangers and Heat Pipes

🔮 <u>Pros</u>

- Good airstream separation
- High sensible efficiency (75%) sometimes latent available
- Heat pipes easily cleaned
- High reliability no moving parts
- Indirect evaporative cooling possible

Cons

- ✓ May be space intensive
- Generally no latent transfer
- Plate heat exchangers difficult to clean

Airside Heat Recovery Options

Heat or Enthalpy Wheels

<u>Pros</u>

- Highest sensible and latent efficiency (80%)
- May have better cooling savings
- Significant reductions in peak heating and cooling loads
- ✓ Purge minimizes carry over

Cons

- Airstream separation issues
- Can be space intensive Operational issues
- Some contamination will occur

Enthalpy Wheel – Size & Space Factors

An Application for Improving Wheel Safety

Enthalpy wheel used on lab general exhaust

 Cross-contamination safety helped by multiplexed sensing of supply air stream before & after wheel

Used on Dartmouth College Life Sciences lab building

Options Summary

Туре	Effectiveness		Carryover	Reliability	Airstream	Comments
	Sensible	Latent			Proximity	
Enthalpy Wheel	70%-80%	65%-80%	Yes (5 to 0.05%)	Average	Required	Greenest
Heat Pipe	60%-75%	0%*	None	Highest	Required	Contains refrigerant
Plate HX	60%-75%	0%*	None	Highest	Required	
Runaround Loop	50%-60%	0%*	None	Average	Not Required	Glycol or Refrigerant

* Some latent recovery possible if indirect evaporative cooling is employed

55% Glycol Runaround Savings at 6 ACH

55% Runaround HR w/ 4/2 DBC: only \$24K or 6% saving. HR payback: >15 yrs. even w/ HVAC capital savings!

75% Enthalpy Wheel Savings w/ 4/2 DBC

75% Enthalpy HR w/ 4/2 DBC: only \$36K or 9% saving. HR payback: 9.7yrs. w/ capital savings

Savings of a 75% Enthalpy Wheel at 6ACH

Average across all cites above: savings is \$68K or 16%

DBC Can Make Enthalpy Wheels More Economic

W/ DBC 2/2, CB, & reduced sash: HR savings is reduced to \$25 K or 6.4%, but payback improves to 6.9 years

Holistic Strategies for Increased Savings

- Individually evaluating systems is suboptimal
 DBC, chilled beams, hoods & heat recovery
 To optimize lab safety, first cost & energy:
 - Combining systems appropriately is best
 - Also use a layered or pyramid approach:

Summary of Technologies & Savings from 6 ACH

Including all approaches, total lab HVAC reduction is 73% or 65% w/o heat recovery!

Summary of Right Sized HVAC Savings at 6 ACH

Total Capital Cost Savings of \$850K. Including DBC the net savings is \$386K.

Ventilation Workshop Presentation Summary

- Low ACH design is key to Net Zero Energy
 - ✓ Foundation for Deep Energy Reduction
 - ✓ Demand Based Control helps safely reduces lab ACH
 - ✓ DBC is often ≥3X savings of best heat recovery
- Chilled beams/fan coils decouple cooling & airflow
 - ✓ Saves more energy & first cost when used with DBC
- Cutting energy/airflow can also Reduce First Cost!

Questions?

For a copy of the presentation, contact: Gordon Sharp, gsharp@Aircuity.com

Related Topic: Flow Reduction in Vivariums

- New ILAR & AAALAC Guidelines
- Vivarium DBC approach
- Vivarium site analysis
 - ✓ 3 Different types, 100,000 operating hours
- Case study of Univ. of Penn. vivarium

Further ASHRAE Handbook Vivarium Guidance

Performance Based Recommendations on ACH

- "The guideline of 10-15 fresh-air changes per hour has been used for secondary enclosures (the room) for many years and is considered an acceptable general standard. Although it is effective in many animal-housing settings, the guideline does not take into account the range of possible heat loads; the species, size, and number of animals involved;"
- "Active sensing of contaminants in the secondary enclosure and varying the air change rates based on the room environmental conditions is one approach that can be considered to meet these requirements in a more energy efficient manner."

Chapter 3: page 46 (Chapter 5: page 139)

VAV systems

"These systems offer considerable advantages with respect to flexibility and energy conservation, but should always provide a minimum amount of air exchange, as recommended for general use laboratories"

"...but variable-volume (VAV) systems may offer design and operational advantages, such as allowing ventilation rates to be set in accordance with heat load and other variables."

AAALAC's Belief in Performance Based Criteria

Chapter 3: page 46 (Chapter 5: page 139) VAV systems

Council interpretation:

- May allow for an air exchange rate below the previous guideline of 10-15 ach.
- Council will asses overall air quality and air exchange rate using performance based criteria that will take into account a variety of circumstances such as: <u>cage type</u> (ventilated cages vs static), whether IVC racks have <u>supply and discharge air</u> from the room (or directly to the building exhaust system), <u>filtration</u> of animal cage exhaust air (if any), <u>animal density</u>, <u>husbandry practices</u> and the overall needs of the animals and the science.
- Assessments will be made via the HVAC reports and on-site evaluations

2008: Research Study on Vivarium DCV Data

- Applied DBC to 3 vivarium facilities
- Data collected on 3 "worst case" vivarium types
 - ✓ Rodents: open, unventilated cages
 - ✓ Rodents: ventilated cages but exhausted into room
 - ✓ Non-human primates with open cages
- Approx. 100,000 hours of operation analyzed

2008 Data on Animal Room TVOC Data

TVOC/Ammonia impact ~ .2% to 1.5 %

2008 Data on Animal Room Particle Level Data

Particle impact on energy: ~0% to 1.2%

Other Benefits to IEQ Sensing in Vivariums

Validate safe IEQ room conditions

- Documents room environment
 - Ensures a clean room environment
 - Facilitates quick diagnosis of problems

Photo courtesy of Lab Products, Inc., Seaford, DE

- Validate efficacy & frequency of cage changing
 - Detect excess particles/allergens from poor practices
 - Ammonia detection may help gage cage change period
 - Possible labor reduction from optimizing cage changes
- More accurate & reliable humidity sensing
 - ✓ Less intrusive since sensors are remote
 - Affordable factory calibration & higher quality sensors

NHP Rooms Showing High Particle Spikes

Particle spikes are large and require increased ventilation. What could be causing them?

NHP Cage Changes Causing High Particle Spikes

Cage cleaning also creates a spike in dewpoint/humidity

Vivarium DCV Responds to NHP Room Particle Spikes

Typical Vivarium Data for TVOC's

Typical levels are low but TVOC events happen commonly and need increased flow to purge

Significant TVOC Event & Airflow Purging

Typical Particle Levels from a Vivarium

Small particle excursion events can be seen as well as use of a cage change station that is cleaning the air

Typical Vivarium Data for Humidity

UPenn Evaluated DBC Impact on Odors (Open Cages)

	Population	First Week (11-16-2009)	Second Week (11-23-2009)		
Vivarium	Percent	Room Ammonia in PPM	Room Ammonia in PPM		
Room	Occupied	No DCV - Min flow at ~10 ACH	DCV from 10 to 19 ACH		
В	83%	6	0		
С	92%	8	2.5		
D	96%	6	0		
F	22%	0	0		
G	44%	9	0		
к	40%	5	0		

Week 1: ACH min dropped to 10 ACH w/ temp override:
✓ Odors noticed & 5 to 10 PPM of room ammonia at cage change

- Week 2: Demand based control enabled (10 to 19 ACH)
 - ✓ Odors absent & 0 to 2.5 PPM room ammonia at cage change

DBC permits successful safe use of lower ACH

Actual Energy Savings: Hill Pavilion Vivarium

Monthly data analysis for Hill Pavilion revealed significant changes throughout the year in the operational costs and air flow reduction for the vivarium spaces.

The CFM savings were more significant in Hill Pavilion than in the other pilot study in Lynch Life Sciences due to a larger delta in the reduction of the ACH rate from a constant 19 ACH to an adaptable ACH rate.

Energy Used WITHOUT	Steam/BTU	Power kWh	CHW/BTU	avrg CFM used	Cost per avg CFM	MTCDE
Total Energy October thru September	1,767,219,960	106,970	575,306,288	5,470	\$ 10.10	159
Total \$ cost /Typ of Energy	\$ 41,113.26	\$ 8,022.75	\$ 6,112.63			
Toatal \$ Spent October thru September	\$ 55,248.64					

Energy Used WITH	Steam/BTU	Power kWh	CHW/BTU	avrg CFM used	Cost per avg CFM	MTCDE
Total Energy October thru September	988,629,479	68,648	364,861,309	3,475	\$ 9.22	96
Total \$ cost /Typ of Energy	\$ 22,999.84	\$ 5,148.63	\$ - 3,876.65		Max Average ACH	Average Min ACH
Toatal \$ Spent October thru September	\$		32,025.12	\mathbf{i}	18.84	10.26
				-		

Energy Savings WITH	Steam/BTU	Power kWh	CHW/BTU	avrg CFM Saved	Cost Savings per avg CFM	MTCDE
Total Energy Saved October thru September	778,590,481	38,322	210,444,980	1,995	\$ 0.88	63
Total \$ cost /Typ of Energy saved	\$ 18,113.42	\$ 2,874.13	\$ 2,235.98			12. (A)
Toatal \$ saved October thru September	\$ 23,223.52			42 % Reduction in cost!!		

Low ACH Animal Facility Design Example

- Model typical 30K NSF vivarium
- Assume 100 rooms at 300 ft² avg.
- Evaluate impact of DBC
 - ✓ Proposed DBC min. rate of 6/4 ACH
 - Compare alone & w/ chilled beams
- Look at impact of heat recovery:
 - Glycol loop (No Enthalpy wheels due to ammonia carryover)
- Assume baseline of 15 ACH
- Use Boston for weather data

More Vivarium Analysis Assumptions

Room Temp set to 74 DegF Energy Cost Assumptions: Electric: \$.11/kWh Gas: \$1.00/therm Include humidification (steam) Assume avg. day cooling loads:

- ✓ 20% 3 watts/ft²
 - Procedure space Light load
- ✓ 60% 6 watts/ft²
 - Moderate thermal load for animal spaces
- ✓ 20% 12 watts/ft.
 - High thermal load animal spaces

15 ACH Baseline Energy Costs For Boston

- Skin & solar gains typically small compared to OA
- Base flow rate of Vivarium: 82.5K cfm
- Total baseline energy use is \$597K/ year

DBC Energy Savings of Min Flow of 6 Day/4 Night

Demand Based Control reduces vivarium HVAC energy by \$360K or by 60% vs. 15 ACH. Payback is 1.4 yrs.

55% Glycol Runaround Heat Recovery Savings

55% Runaround HR w/ 6/4 DBC: only \$27K or 4.5% saving. HR payback: 8 yrs. even w/ HVAC capital savings!

HVAC 1st Cost Savings of 6/4 ACH vs. 15 ACH

DBC at 6/4 ACH vs. 15 ACH reduces peak HVAC airflow by 34% or ~ \$892K. Net first cost savings of: \$376K!

Ventilation Workshop Presentation Summary

- Low ACH design is key to Net Zero Energy
 - ✓ Foundation for Deep Energy Reduction
 - ✓ Demand Based Control helps safely reduces lab ACH
 - ✓ DBC is often ≥3X savings of best heat recovery
- Chilled beams/fan coils decouple cooling & airflow
 - ✓ Saves more energy & first cost when used with DBC
- Cutting energy/airflow can also Reduce First Cost!

Questions?

For a copy of the presentation, contact: Gordon Sharp, gsharp@Aircuity.com

