Humidity Control & Psychrometrics Jowa Chapter of ASHRAE March 22, 2017

R. Mark Nunnelly, P.E., CxA, LEED AP Nunnelly & Associates, Inc. Commissioning & Humidity Control Consulting Birmingham, AL mnunnelly@nunnellyengineering.com www.nunnellyengineering.com This ASHRAE Distinguished Lecturer is brought to you by the Society Chapter Technology Transfer Committee

Complete the Distinguished Lecturer Event Summary Critique

- * CTTC needs your feedback to continue to improve the DL Program
 - Distribute the DL Evaluation Form to all attendees
 - Collect at the end of the meeting
 - Compile the attendee rating on the Event Summary Critique
 - Send the completed Event Summary Critique to your CTTC RVC and ASHRAE Headquarters

Forms are available at: <u>www.ashrae.org/distinguishedlecturers</u>

VOLUNTEER! www.ashrae.org/volunteer

BECOME A FUTURE LEADER IN ASHRAE – WRITE THE NEXT CHAPTER IN YOUR CAREER

ASHRAE Members who are active at their chapter and society become leaders and bring information and technology back to their job.

YOU ARE NEEDED FOR:

- Society Technical Committees
- Society Standard Committees
- Chapter Membership Promotion
- Chapter Research Promotion
- Chapter Student Activities
- Chapter Technology Transfer

Find your Place in ASHRAE and volunteer

Humidity Control & Psychrometrics ...

Designing for Absolute Humidity Control Why do we "air-condition" our buildings?

Control Temperature
Control Humidity/Moisture
Control Air Movement
Control Air Quality

CONTROL the environment!

Why is it so hard to control HUMIDITY?

Lack of understanding of PSYCHROMETRICS

 Unaware of published ASHRAE Weather data (since 1997 Fundamentals Handbook)

 Installing inappropriate equipment for the task (selection type and/or capacity)

PSYCHROMETRICS

Definition: Is the study of the physical and thermodynamic properties of air and water vapor mixtures.

All the air we breathe contains some amount of moisture.

Psychrometric Chart

Dry Bulb Temperature

The temperature of air as measured by a thermometer with a dry sensing bulb

Wet Bulb Temperature

The temperature at which water will evaporate into the air sample.
Physically... the temperature of air when measured by a thermometer with a wetted wick over the sensing bulb.

Relative Humidity

The amount of water vapor in the air, compared to its maximum capacity at that specific dry bulb temperature
 Relative measurement... not *absolute*

Why is Understanding "Relative Humidity" Beneficial?

Many charts, tables and standards use "Relative Humidity" as a reference or guideline.

ASHRAE Human Comfort Zone

(2013 ASHRAE Handbook – Fundamentals, Ch. 9)

Fig. 5 ASHRAE Summer and Winter Comfort Zones

(Acceptable ranges of operative temperature and humidity for people in typical summer and winter clothing during primarily sedentary activity.)

INDOOR AIR QUALITY

Effect of room humidity on selected human health parameters

Decrease in Bar Indicates Decrea	OPTIMUM ZONE					
Bacteria						
Viruses						
Fungi						
Mites						
Respiratory Infections						
Allergic Rhinits and Asthma	and the second					
Chemical Interactions						
Ozone Production						
	10 2	0 30 _{Per}	40 50 rcent Relative	60 70 Humidity	80	90

Building Indoor Air Quality – The Mold Square

Molds and mildew are fungi that grow on the surfaces of objects, in pores, and in deteriorated materials. They can cause discoloration and odor problems, deteriorate building materials, and lead to allergic reactions in susceptible individuals, and other health problems.

The following conditions are necessary for mold growth to occur on surfaces:

- Temperature between 40°F and 120°F
- Nutrient base
 - (most surfaces contain nutrients)
- Moisture
- Mold spores

Absolute Humidity: Humidity Ratio

The weight of water vapor divided by the weight of the dry air (lb_w/lb_a) - an *absolute* measurement
 lb_w/lb_a x 7000 = grains of water per lb of air

Dew Point

The temperature at which the moisture contained in the air will begin to condense (i.e., the temperature at which the air sample would be 100% RH).

Another absolute measurement of moisture

Why is it important to understand "dewpoint"?

"Raining" in the Operating Rooms!

What happens when the dewpoint temperature of the air is greater than the surrounding surfaces' temperature?

Cold surfaces on conveyors, pipes, coi

Absolute Humidity vs. Relative Humidity

Consider the balloon of 1 Ft³ volume at ambient temperature with an absolute amount of water of 1 gallon. What happens when the balloon is either heated or cooled? What is the new "relative" volume of water? What is new "absolute" volume of water?

Enthalpy

Total Amount of Energy in the air
BTU/# Dry Air

Heat Load Formulas

 Total Load (i.e., Sensible + Latent) QT = 4.5 x (Enthalpy Difference) x cfm
 Sensible Load QS = 1.08 x (Temperature Difference) x cfm
 Latent Load QL = 0.68 x (Humidity Ratio Difference) x cfm

QT = QS + QL

Vapor Pressure

A measure of how high the water vapor can lift a column of mercury due to its pressure. Moisture travels from the HIGHER Vapor Pressure to the LOWER Vapor Pressure. The difference in Vapor Pressure is the driving force behind moving water vapor.

Applied Psychrometrics

What is the Vapor Pressure of the air inside a building at the conditions of 75°F drybulb and 50% RH? 0.438″ HG What is the Vapor Pressure of the air outside a building at the conditions of 82°F drybulb and 77°F wetbulb? 0.883″HG Vapor Pressure Differential of 0.445"HG (x 13.596 = 6.052" WG)

(0.883-0.438) X 13.596 = 6.052" wg

Bernoulli's Equation: Dynamic Velocity Rate=4005 $\sqrt{6.052}$ = 9,852.6 FPM = 112 MPH

Outside Air Design Conditions

Understanding ASHRAE Weather Tables

Typical Ambient Conditions

Dry Bulb and Grains

2013 ASHRAE Fundamentals Handbook – Climatic Conditions

						DES M	IOINES I	NTL, IA,	USA					WMO#	726480
Let	41.54N	Long	93.67W	Eev	865	567	14.19	1	Time Zone	-8 (NAC)	ő.	Period	86-10	WDAN	14933
Contract Sec		of the line of	ine beside c												2
Coldent	Heati	ng DB	-	10.6%	diffication D	PIMCOB and	00%		6	Coldeat mon 4%	th WS/MCD	28 %	MCWS b 90.1	5% DB	
Month	20.6%	92%	DP	HE	MCCB	DP	HR	MCOB	WS	MCDB	WS	MCDB	MOWS	PCWD	
(*)	(0)	(0)	(0)	(*)	43	101	101	(1)	10.9	141	(7)	(#)	(*)	910	
	-0.0		-19.1	2.0	-R.E	-9.4	0.0	6.6	30.2	10,0	20.0	20.0	0.6	310	
	Ale Band		and has sufficient on	Contract	COLUMN THE OWNER			2		C	- HE ALCON	_		1 447-1441	DOM D
Huttent Month	Month	0	4%	LooingL	X	2	s	0	4%	Eveponenor	%	2	*	to 0.4	5 D5
1.41	DB Range	08	MOWE	DB	MCWB	DB	MCWS	WB	MCDB	WB	MCDB	WB	MCOB	MCWS	POWD
7	17.8	82.6	78.4	88.8	76.1	88.9	73.3	78.6	88.6	77.1	88.8	76.6	84.1	12.2	180
	3.05	100	Deturidito	ation DPVM	CDB and HI	1	1000		12 15	27. 8	Enthelp	MCDB	85	8	Hours
DP	0.4%	MCDB	DP	HR	MCDB	DP	2%	MCDB	E-th	A%	Enth	MCDB	Erm	NCD8	51048
(*)	(4)	10)	(0)	(+)	(1)	(0)	(6)	(1)	an.	.01	m	(m)	(n)	(0)	(p)
76.8	138.7	84.7	74.1	131.9	83.4	72.6	126.0	\$1.6	42.8	88.8	41.2	86.8	38.7	84.8	821
alrente A	Annual Dest	gn Conzilli	100												
Late	whe Annual	WS I	Extreme		Extern	Annual 08		-		n-Year Re	eum Pedod	Values of E	streme DB		
1%	2.5%	5%	Max	Mar.	Max	Standard Min	Mex	Min Min	Max	n=10 Min	Max	m=20 Min	Max	TM60	Max
(4)	(4)	60)	(d)	(*)	(0)	(81	(4)	(I)	(1)	(8)	(1)	(#)	103	fa]	(8)
25.4	22.8	18.6	86.1	-11.4	8.86	6.2	3.1	-16.1	88.0	-18.2	100.8	-21.1	102.6	-24.8	104.9
centrary C	analic Des	rge Condt	Horna .												
			Annual	Jan	Feb	Mat	Apr	Mary	Jun	44	Aug	Bap	Oct	Nov	Dec
		Tevp	60.8	23.2	27.3	38.4	51.8	62.2	71.7	76.8	73.8	85.5	63.0	38.3	26.8
Set Temperatures, HDD50		54		12.23	12.38	11.78	8.99	7.93	8.38	6.44	6.98	7.87	9.61	10.61	11.60
		3085	832	638	367	86	6	0	0	9	2	78	348	722	
Degree	e-Days nd	HDD65 CDD60	6172	1287	1067	796	416	160	17 862	801	737	487	388	26	1186
Degree	-Hours	CDDES	1034	ē.	0	2	14	63	218	337	278	106	16	0	0
		CDH04	9260	0	0	22	165	560	1968	3178	2388	867	141	3	0
		CDHEG	3231		0	4	38	124	679	1260	861	249	26	0	0
		Preciag	33.1	1.0	1.1	2.3	3.4	3.7	4.6	3.8	4.2	3.6	2.8	1.8	1.3
Precip	notistic	PrecMax	22.7	0.2	0.1	0.4	0.9	1.8	1.1	0.0	11	0.8	0.3	0.0	0.1
		Precisio	6.3	0.9	0.8	1,3	1.7	1.6	2.4	2.2	3.2	2.6	1.6	1.0	0.7
		2.42	DB	56.0	61.6	78.6	86.0	87.6	83.9	86.9	96.6	90.3	83.6	72.7	68.8
Monthly	Design	0.4%	MCWB	48.7	51.1	59.2	84.8	70.6	76.4	77.7	78.8	71.9	87.2	68.3	52.3
Dry	Bulb	2%	DB	48.8	48.9	69.2	79.0 82.3	83.6	88.7	83.2	91.3 78.7	88.2	78.1	65.4	61.7
Mean Co	decident	100	DB	43.3	48.6	63.2	73.3	80.3	87.0	90.1	88.0	82.6	73.0	60.0	48.1
Wet	Bulb	2%	MCWB	38.1	41.7	54.0	68.9	85.7	72.2	78.3	75.3	69.2	81.1	62.2	40.7
		10%	DE	38.4	43.4	67.6	68.4	76.6	83.8	88.8	84.5	78.1	68.4	48.3	41.4 38.P
	_		MAN .	49.7	62.0	82.9	44.1	74.4	79.4	91.2	80.2	75.9	71.1	82.1	54.F
March 1	Dealer	0.4%	MCDB	53.3	57.1	71.8	81.1	83.8	88.8	92.4	80.4	85.6	78.5	67.8	57.2
Wet	Buib	- 24	WB	42.0	48.4	58.8	64.3	71.3	78.6	79.0	78.2	73.6	86.6	68.2	48.1
-	be		MC08	48.1	55.0	66.4	75.2	78.6	86.5	88.3	B8.0	82.3	74.2	84.4	48.8
Dry	Bulb	5%	MCDE	43.2	47.8	63.6	70.8	78.8	84.0	87.5	85.8	79.6	70.7	68.5	40.8
Тапра	ratures	100	WB	34.8	38.3	49.4	57.8	85.7	72.6	78.0	75.0	69.4	68.8	48.8	37.1
		108	MCDB	37.8	42.8	67.3	66.6	73.7	81.4	84.7	83.1	78.4	67.1	64.5	40.7
Mean Delly		18 - B	MOBR	15.8	16.5	18.8	20.4	18.2	18.4	17.9	17.8	20.2	19.5	16.9	15.2
		9% DB	MCD8R	22.1	23.6	28.7	27.4	23.1	21.3	21.0	20.8	22.8	26.1	23.9	21.7
Rat	nge	Secold.	MCMBH	21.0	22.4	24.2	23.7	12.1	18.9	18.9	18.6	19.6	21.3	20.6	20.3
879 L		3% W8	MCWBIT	16.7	16.8	16.1	14.4	11.7	10.4	8.6	9.8	11.2	13.8	16.3	16.8
1aub			8,0	0.282	0.294	0.324	0.341	0.345	0.377	0.389	0.372	0.360	0.320	0.302	0.268
Clear	r Sky kar		aut.	2.480	2.389	2.429	2.384	2.380	2.287	2.280	2.376	2.440	2.660	2.620	2.667
Intel	lance	Ibr	1,0000	278	291	284	286	284	284	278	281	281	280	271	268
			r'uddie.	20	30	32	41	- 50	41	41	- 20	- 24	25	-21	20

@ 2013 ASHRAE Inc

2013 ASHRAE Handbook - Eurodamentals (IP)

Ambient Design Conditions, 2013 *ASHRAE 0.4% Occurrences – Des Moines, IA*

2013 ASHRAE Handbook - Fundamentals (IP) © 2013 ASHRAE, Inc										RAE, Inc.						
DES MOINES INTL, IA, USA										WMO#:	725460					
Lat	41.54N	Long:	93.67W	Elev:	965	StdP:	14.19		Time Zone:	-6 (NAC)		Period:	86-10	WBAN:	14933	
Annual Cooling, Dehumidification, and Enthalpy Design Conditions																
Hottest	Hottest			Cooling D	B/MCWB					Evaporatior	WB/MCDB	•		MCWS	PCWD	
Month	Month	0	.4%	1	%	2%	2% 0.4%		4%	1%		2	2%		to 0.4% DB	
wonun	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
7	17.9	92.5	76.4	89.6	75.1	86.9	73.3	78.5	88.5	77.1	86.8	75.5	84.1	12.2	180	
Dehumidification DP/MCDB and HR							Enthalpy/MCDB Hours					Hours				
	0.4%			1%		-	2%			0.4%		1% 2		%	8 to 4 &	
DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	55/69	
75.6	138.7	84.7	74.1	131.9	83.4	72.6	125.0	81.6	42.8	88.8	41.2	86.8	39.7	84.6	621	

Ambient Design Conditions, 2013 ASHRAE 0.4% Occurrences – Des Moines, IA

	Cooling	Dehumidification				
Drybulb	92.5 °F	84.7 °F				
Wetbulb	76.4 °F	78.6°F				
Hum. Ratio	111.8 gr/#	138.7 gr/#				
Dewpoint	70.2°F	75.6 °F				
Enthalpy	39.8 Btu/#	42.1 Btu/#				
Vapor Pressure	0.7459″ hg	0.92″ hg				

0.4% ASHRAE Ambient Design Conditions 2013 (*Des Moines, IA*)

0.4% ASHRAE Ambient Design Conditions 2013 (*Des Moines, IA*) and Space Design Condition

0.4% ASHRAE Ambient Design Conditions 2013 (*Des Moines, IA*) and Refrigeration Capacity Required of Outside Air (Example)

Divide and Conquer

Typical Dedicated Outside Air System Installation

- Dehumidified Air
- (T) Zone Temperature Control (Terminal Units)
- (H) Humdity Control

Divide and Conquer

Typical Dedicated Outside Air System Installation

- Dehumidified Air
- T Zone Temperature Control (Terminal Units)
- H Humdity Control
- VRV Cassette / Indoor Unit

Dry Ventilation Air Dries The Building

What is Latent Heat Gain? Lg = 0.68 x (Wr – Ws) x CFM

Where:
Ws = Humidity Ratio Required of Supply Air (grains moisture / # dry air)
Wr = Humidity Ratio of Return Air (Space) (grains moisture / # dry air)
Lg = Latent Gain (total, or per person) (BTU/hr)
CFM = Ventilation Air Requirement (total, or per person) (cubic feet / minute)

Calculating for the Supply Air Humidity Ratio <u>Ws = Wr – Lg / (0.68 x CFM)</u>

Where: Ws = Humidity Ratio Required of Supply Air (grains moisture / # dry air) Wr = Humidity Ratio of Return Air (Space) (grains moisture / # dry air) Lg = Latent Gain (total, or per person) (BTU/hr) CFM = Ventilation Air Requirement (total, or per person) (cubic feet / minute)

Example: Supply air requirement for an Office Building

Given:

Design Space Condition of 73°Fdb/50% RH
Latent Gain per employee of 200 BTU/hr
Ventilation Rate of 20 CFM/person
At 73°Fdb/50% RH, the Humidity Ratio (Wr) is equal to 60.6 grains moisture / # dry air

Ws = 60.6 - 200 / (0.68 x 20) = 45.89 gr. moist. / # dry air = <u>45.9°F dewpoint</u> = 0.0066 # moisture / # dry air

Example: Supply air requirement for a School Building

Given:

Design Space Condition of 73°Fdb/50% RH
Latent Gain per student of 200 BTU/hr
Ventilation Rate of 15 CFM/person
At 73°Fdb/50% RH, the Humidity Ratio (Wr) is equal to 60.6 grains moisture / # dry air

Ws = 60.6 - 200 / (0.68 x 15) = 40.99 gr. moist. / # dry air = <u>43.0 °F dewpoint</u> = 0.0059 # moisture / # dry air

Example: Supply air requirement for an Operating Room

Given:

Design Space Condition of 60°Fdb/50% RH
Latent Gain per person of 200 BTU/hr
Ventilation Rate of 30 CFM/person
At 60°Fdb/50% RH, the Humidity Ratio (Wr) is equal to 38.5 grains moisture / # dry air

Ws = 38.5 – 200 / (0.68 x 30) = 28.7 gr. moist. / # dry air = <u>33.9 °F dewpoint</u> = 0.0041 # moisture / # dry air

Space Design Conditions

Comparison of Engineering Best Practice with AIA Guidelines and ASHRAE Handbook

Function Space	Operating Room	Operating Room	Operating Room
	(100% Outside Air System)	(Recirculating Air System)	Surgical Cystoscopic Rooms
Minimum Air Changes of Outdoor Air / Hour			
Manual	*	5	5
ASHRAE Handbook	15	5	*
AIA Guideline	*	*	3
Minimum Total Air Changes / Hour			
Manual	*	25	25
ASHRAE Handbook	15	25	*
AIA Guideline	*	*	15
Relative Humidity, %			
Manual	*	30-60	30-60
ASHRAE Handbook	45-55	*	*
AIA Guideline	*	*	30-60
Design Temperature, °F			
Manual	*	68-75	68-75
ASHRAE Handbook	62-80	*	*
AIA Guideline	*	*	68-73
* No Value Given			

There are only 2 ways to remove moisture from the air ...

Adsorb / Absorb it out
Condense it out

Dehumidification Technologies

Desiccant-based Systems: Adsorbs/Absorbs moisture out of the air
 Solid Desiccants (i.e., wheels)
 Liquid Desiccants

Mechanical-based Systems: Condenses the moisture out of the air

Chilled WaterDirect Expansion (DX)

Choose the right equipment for the job!

What is a "Desiccant"? A material that possesses an affinity for moisture

vapor greater than that of the surrounding air.

Adsorb / Absorb it out ...

 Actively regenerated desiccant dehumidifier (solid rotor-type, or liquid-type)

- Desiccant material adsorbs (solid) or absorbs (liquid) water vapor from the process airstream.
- The heat from sorption is removed via cooling coils or heat exchanger after the desiccant rotor.

... or *Condense* it out

Mechanical Dehumidification system

- The cooling coil cools the process airstream down to, or below, the air's Dewpoint temperature. Supply air Dewpoint dependent upon coil temperature.
- Any warming required (i.e., tempering) of this processed air is done after the cooling coil. This is done through a reheat coil (e.g., HW, Steam, Electric, HGRH, etc.) or HX.

Mechanical-based

Chilled Water
Direct Expansion (DX)
Heat Pipes
Hot Gas Bypass
Sub-cool Reheat
Etc.

Hybrid Desiccant Systems

When to use Desiccant vs. Mechanical? *(personal opinion)*

Applications for Humidity Control

Typical System Application for Theaters & "Big Box" Retailers

Ventilation Air Preconditioning Unit

Rooftop units, without ventilation, for temperature control only

Hospital Surgical Suites

Hospital Surgical Suite: 20°Fdp

Climate Controlled Distribution Center

Clean Room / Measurement Lab 68°Fdb / 35% RH / 39°Fdp

Cleanroom / Packaging Room 68Fdb / 25%RH / 31Fdp

Hotels / Motels

Schools

Example: Supply air requirement for a School Building

Given:

Design Space Condition of 73°Fdb/50% RH
 Latent Gain per student of 200 BTU/hr
 Ventilation Rate of 15 CFM/person
 At 73°Fdb/50% RH, the Humidity Ratio (Wr) is equal to 60.6 grains moisture / # dry air

Ws = 60.6 – 200 / (0.68 x 15) = 40.99 gr. moist. / # dry air = <u>43.0 °F dewpoint</u> = 0.0059 # moisture / # dry air

School Building: 40°Fdp

Cold Storage Ice / Snow

More detailed advice from ASHRAE ...

Guide for Buildings in Hot and Humid Climates

HVA

CHAPTER 62

MOISTURE MANAGEMENT IN BUILDINGS

CAUSES	
MOISTURE TOLERANCE AND	
LOADS.	62.2
RISK FACTORS AND MITIGATION	62.3
HVAC Systems	
Architectural Factors	
Building Operational Decisions	62.5

SCILUTIONS	62.6
Architecture and Design	62.6
HVAC Systems	62.3
MEASURING BUILDING DAMPNESS	62.10
Water Activity	62.10
Moisture Content Measurement Fariation	62.11

INDORS, buildings should always be dry. When building interioring set damp and stay damp, problems other energies for their occupants and for the building's structure, material, and furnishings. Persistent indoor dampness has been associated with human bailth problems, increased risk to buildings' structural fasteners and exterior enclosure, shortened useful life of furnishings, and reduced acceptability to occupants because of odors and stains. These and related problems can be costly and disruptive, as well as annoying to all concerned (ASHRAI: 2013).

Human Health

The U.S. National Academy of Medicine and the World Health Organization determined that there is a clear association between damp buildings and negative bankit effects (NM 2004). The U.S. Department of Energy's Lawrence Berkeley National Laboratory estimated the cost of documented dampioess-specific health effects to be more than \$3.5 buillon each year (Mudari and Fiek 2007), and

Avoiding Litigation Risk

Humidity and moistum-related problems in buildings have been the single largest category of claims against the errors and omissions insurance of architects and engineers (64%). Also, moisture-related damage is the single most-lifigated construction defect against contractors (KALC 2008).

1. CAUSES

Based on investigations of problem buildings, dampness sufficient to cause problems seldom has a single cause. More often, a series of events, including decisions in many ureas of professional and personal responsibility, combine in complex ways to cause a problem. Therefore, it is not appropriate to assign responsibility for building dyness to any single group, because it is not likely that any one group can prevent a problematic level of dampness, muld, ur microbial growth by their actions alone.

Humidity Control Design Guide

Chinese Edition

Japanese Edition

It's not the HEAT ... It's the *Humidity!*